Tuesday, July 16, 2013
Scientists outline long-term sea-level rise in response to warming of planet
Oregon State University News & Research Communications: A new study estimates that global sea levels will rise about 2.3 meters, or more than seven feet, over the next several thousand years for every degree (Celsius) the planet warms. This international study is one of the first to combine analyses of four major contributors to potential sea level rise into a collective estimate, and compare it with evidence of past sea-level responses to global temperature changes.
Results of the study, funded primarily by the National Science Foundation and the German Federal Ministry of Education and Research, are being published this week in the Proceedings of the National Academy of Sciences.
“The study did not seek to estimate how much the planet will warm, or how rapidly sea levels will rise,” noted Peter Clark, an Oregon State University paleoclimatologist and author on the PNAS article. “Instead, we were trying to pin down the ‘sea-level commitment’ of global warming on a multi-millennial time scale. In other words, how much would sea levels rise over long periods of time for each degree the planet warms and holds that warmth?”
“The simulations of future scenarios we ran from physical models were fairly consistent with evidence of sea-level rise from the past,” Clark added. “Some 120,000 years ago, for example, it was 1-2 degrees warmer than it is now and sea levels were about five to nine meters higher. This is consistent with what our models say may happen in the future.”
Scientists say the four major contributors to sea-level rise on a global scale will come from melting of glaciers, melting of the Greenland ice sheet, melting of the Antarctic ice sheet, and expansion of the ocean itself as it warms. Several past studies have examined each of these components, the authors say, but this is one of the first efforts at merging different analyses into a single projection.
The researchers ran hundreds of simulations through their models to calculate how the four areas would respond to warming, Clark said, and the response was mostly linear. The amount of melting and subsequent sea-level response was commensurate with the amount of warming. The exception, he said, was in Greenland, which seems to have a threshold at which the response can be amplified....
An iceberg in the high Arctic, a beautiful shot by Brocken Inaglory, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Results of the study, funded primarily by the National Science Foundation and the German Federal Ministry of Education and Research, are being published this week in the Proceedings of the National Academy of Sciences.
“The study did not seek to estimate how much the planet will warm, or how rapidly sea levels will rise,” noted Peter Clark, an Oregon State University paleoclimatologist and author on the PNAS article. “Instead, we were trying to pin down the ‘sea-level commitment’ of global warming on a multi-millennial time scale. In other words, how much would sea levels rise over long periods of time for each degree the planet warms and holds that warmth?”
“The simulations of future scenarios we ran from physical models were fairly consistent with evidence of sea-level rise from the past,” Clark added. “Some 120,000 years ago, for example, it was 1-2 degrees warmer than it is now and sea levels were about five to nine meters higher. This is consistent with what our models say may happen in the future.”
Scientists say the four major contributors to sea-level rise on a global scale will come from melting of glaciers, melting of the Greenland ice sheet, melting of the Antarctic ice sheet, and expansion of the ocean itself as it warms. Several past studies have examined each of these components, the authors say, but this is one of the first efforts at merging different analyses into a single projection.
The researchers ran hundreds of simulations through their models to calculate how the four areas would respond to warming, Clark said, and the response was mostly linear. The amount of melting and subsequent sea-level response was commensurate with the amount of warming. The exception, he said, was in Greenland, which seems to have a threshold at which the response can be amplified....
An iceberg in the high Arctic, a beautiful shot by Brocken Inaglory, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Labels:
global,
modeling,
polar,
science,
sea level rise
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment