Wednesday, July 17, 2013
A warning of mercury's legacy in the environment
Harvard University News: Environmental researchers at Harvard University have published evidence that significant reductions in mercury emissions will be necessary just to stabilize current levels of the toxic element in the environment. So much mercury persists in surface reservoirs (soil, air, and water) from past pollution, going back thousands of years, that it will continue to persist in the ocean and accumulate in fish for decades to centuries, they report.
"It's easier said than done, but we're advocating for aggressive reductions, and sooner rather than later," says Helen Amos, a Ph.D. candidate in Earth and Planetary Sciences at the Harvard Graduate School of Arts and Sciences and lead author of the study, published in the journal Global Biogeochemical Cycles.
Amos is a member of the Atmospheric Chemistry Modeling Group at the Harvard School of Engineering and Applied Sciences (SEAS), where researchers have been collecting historical data on mercury emissions as far back as 2000 BC and building new environmental models of mercury cycling that capture the interactions between the atmosphere, oceans, and land.
Their model reveals that most of the mercury emitted to the environment ends up in the ocean within a few decades and remains there for centuries to millennia. These days, emissions are mainly from coal-fired power plants and artisanal gold mining. Thrown into the air, rained down onto lakes, absorbed into the soil, or carried by rivers, mercury eventually finds its way to the sea. In aquatic ecosystems, microbes convert it to methylmercury, the organic compound that accumulates in fish, finds its way to our dinner plates, and has been associated with neurological and cardiovascular damage.
..."Today, more than half of mercury emissions come from Asia, but historically the U.S. and Europe were major emitters," says second senior author Daniel J. Jacob, Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering at Harvard SEAS and Professor of Earth and Planetary Sciences. "We find that half of mercury pollution in the present surface ocean comes from emissions prior to 1950, and as a result the contribution from the U.S. and Europe is comparable to that from Asia."...
This illustration shows how quickly a drop of mercury released into the atmosphere (top row), soil (middle), or ocean (bottom) finds its way to the soil (green), ocean (blue), or atmosphere (yellow), over time (left to right). It can take hundreds of years for the mercury to be locked away in the deep ocean or minerals. (Image courtesy of Helen Amos.)
"It's easier said than done, but we're advocating for aggressive reductions, and sooner rather than later," says Helen Amos, a Ph.D. candidate in Earth and Planetary Sciences at the Harvard Graduate School of Arts and Sciences and lead author of the study, published in the journal Global Biogeochemical Cycles.
Amos is a member of the Atmospheric Chemistry Modeling Group at the Harvard School of Engineering and Applied Sciences (SEAS), where researchers have been collecting historical data on mercury emissions as far back as 2000 BC and building new environmental models of mercury cycling that capture the interactions between the atmosphere, oceans, and land.
Their model reveals that most of the mercury emitted to the environment ends up in the ocean within a few decades and remains there for centuries to millennia. These days, emissions are mainly from coal-fired power plants and artisanal gold mining. Thrown into the air, rained down onto lakes, absorbed into the soil, or carried by rivers, mercury eventually finds its way to the sea. In aquatic ecosystems, microbes convert it to methylmercury, the organic compound that accumulates in fish, finds its way to our dinner plates, and has been associated with neurological and cardiovascular damage.
..."Today, more than half of mercury emissions come from Asia, but historically the U.S. and Europe were major emitters," says second senior author Daniel J. Jacob, Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering at Harvard SEAS and Professor of Earth and Planetary Sciences. "We find that half of mercury pollution in the present surface ocean comes from emissions prior to 1950, and as a result the contribution from the U.S. and Europe is comparable to that from Asia."...
This illustration shows how quickly a drop of mercury released into the atmosphere (top row), soil (middle), or ocean (bottom) finds its way to the soil (green), ocean (blue), or atmosphere (yellow), over time (left to right). It can take hundreds of years for the mercury to be locked away in the deep ocean or minerals. (Image courtesy of Helen Amos.)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment