Tuesday, October 18, 2011
A robotic team for emergencies
Some typically cool research from the Fraunhofer Institute (Germany): Earthquaks, tsunamies, hurricanes – natural disasters always catch us by surprise, no matter how many early-warning systems are in place. This makes it all the more important for rescue teams to get a quick overview of the situation at hand. In SENEKA, a Markets Beyond Tomorrow project, Fraunhofer researchers are working to network the various robots and sensor systems first responders use so that they can react more quickly and efficiently in the case of an emergency to search for victims and survivors.
... Because every minute counts when the work of saving lives is concerned, robot-supported systems are increasingly used to accelerate search operations. According to the International Federation of Robotics (IFR), the rate of growth in the use of these helpers is expected to increase to 17 percent by 2013. The experience of the past several years also shows that the impact of special robots is very minor because individual devices and systems often cannot function with one another in the field.
In the „Sensor Network with Mobile Robots for Disaster Management“ project, Fraunhofer scientists from a variety of disciplines have teamed up to solve this problem and develop a system that can effectively network all kinds of robots and sensors with one another.
...After disaster strikes, first responders must first get an overview of the area involved. Existing maps and data are useful, but only up to a point if there are no more buildings standing and roads have been blocked or destroyed. The helpers have to reorient themselves, and the only way to accomplish this is with the aid of technical equipment.
... Once potential victims and have been located, the second step consists of mission planning. For this stage, the scientists want to create a system design to provide dynamic networking of all team members. People and robots need to be coordinated – to ensure that the right tools make it to the right location, for instance. This must be possible on an „as-needed“ basis, even if the surroundings change – due to collapsing buildings or aftershocks. Still, robots should be able to find their way through the rubble, usually without collisions. „The network must be robust but flexible at the same time, and dynamically modifiable. Circumstances can change very quickly in danger zones,“ Helge-Björn Kuntzee explains of the high demands involved. To keep all responders linked despite extreme conditions, the scientists are developing their own protocol technologies combining conventional WLAN technology with standards of their own...
Non-robotic air raid precautions dog 'Rip' sits on top of a pile of brick rubble and timber, following a 1941 air raid in Poplar, London
... Because every minute counts when the work of saving lives is concerned, robot-supported systems are increasingly used to accelerate search operations. According to the International Federation of Robotics (IFR), the rate of growth in the use of these helpers is expected to increase to 17 percent by 2013. The experience of the past several years also shows that the impact of special robots is very minor because individual devices and systems often cannot function with one another in the field.
In the „Sensor Network with Mobile Robots for Disaster Management“ project, Fraunhofer scientists from a variety of disciplines have teamed up to solve this problem and develop a system that can effectively network all kinds of robots and sensors with one another.
...After disaster strikes, first responders must first get an overview of the area involved. Existing maps and data are useful, but only up to a point if there are no more buildings standing and roads have been blocked or destroyed. The helpers have to reorient themselves, and the only way to accomplish this is with the aid of technical equipment.
... Once potential victims and have been located, the second step consists of mission planning. For this stage, the scientists want to create a system design to provide dynamic networking of all team members. People and robots need to be coordinated – to ensure that the right tools make it to the right location, for instance. This must be possible on an „as-needed“ basis, even if the surroundings change – due to collapsing buildings or aftershocks. Still, robots should be able to find their way through the rubble, usually without collisions. „The network must be robust but flexible at the same time, and dynamically modifiable. Circumstances can change very quickly in danger zones,“ Helge-Björn Kuntzee explains of the high demands involved. To keep all responders linked despite extreme conditions, the scientists are developing their own protocol technologies combining conventional WLAN technology with standards of their own...
Non-robotic air raid precautions dog 'Rip' sits on top of a pile of brick rubble and timber, following a 1941 air raid in Poplar, London
Labels:
disaster,
emergency,
governance,
science,
technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment