Wednesday, June 5, 2013
Tiny airplanes and subs from University of Florida laboratory could be next hurricane hunters
University of Florida News: Kamran Mohseni envisions a day when the unmanned vehicles in his laboratory at the University of Florida will swarm over, under and through hurricanes to help predict the strength and path of the storms.
The tiny, autonomous craft — some fly, others dart under the waves — can spy on hurricanes at close range without getting blown willy-nilly, while sensors onboard collect and send in real time the data scientists need to predict the intensity and trajectory of storms: pressure, temperature, humidity, location and time.
Mohseni said people always ask him how the miniature flying machines — just 6 inches long and about the weight of an iPod Nano — can take on one of the monster storms. “Our vehicles don’t fight the hurricane; we use the hurricane to take us places,” said Mohseni, the W.P. Bushnell Endowed Professor in the department of mechanical and aerospace engineering and the department of electrical and computer engineering.
The aerial and underwater vehicles can be launched with commands from a laptop hundreds of miles from the eye of a hurricane. Mohseni and a team of graduate students use mathematical models to predict regions in the atmosphere and ocean that can give the vehicles a free ride toward their destination. Once in the vicinity, they can be powered off to wait for a particular current of wind or water. When they detect the current they need for navigation, they power back on, slip into the current, then power off again to conserve fuel as the current carries them to a target location. In essence, they can go for a fact-gathering ride on hurricane winds and waters.
The devices are a departure from current technology, which uses hurricane reconnaissance aircraft to punch through a storm’s eye wall and release dropsondes, sensors that free-fall and might or might not collect helpful data. Underwater data are even more difficult to collect today, although just as important, considering that the warm, moist air on the ocean surface provides fuel for hurricanes....
Autonomous flying drones like this one are the result of research by Kamran Mohseni and graduate researchers with the Institute for Networked Autonomous Systems in the department of mechanical and aerospace engineering at the University of Florida. Photo taken May 30, 2013. Photo by Eric Zamora, University of Florida
The tiny, autonomous craft — some fly, others dart under the waves — can spy on hurricanes at close range without getting blown willy-nilly, while sensors onboard collect and send in real time the data scientists need to predict the intensity and trajectory of storms: pressure, temperature, humidity, location and time.
Mohseni said people always ask him how the miniature flying machines — just 6 inches long and about the weight of an iPod Nano — can take on one of the monster storms. “Our vehicles don’t fight the hurricane; we use the hurricane to take us places,” said Mohseni, the W.P. Bushnell Endowed Professor in the department of mechanical and aerospace engineering and the department of electrical and computer engineering.
The aerial and underwater vehicles can be launched with commands from a laptop hundreds of miles from the eye of a hurricane. Mohseni and a team of graduate students use mathematical models to predict regions in the atmosphere and ocean that can give the vehicles a free ride toward their destination. Once in the vicinity, they can be powered off to wait for a particular current of wind or water. When they detect the current they need for navigation, they power back on, slip into the current, then power off again to conserve fuel as the current carries them to a target location. In essence, they can go for a fact-gathering ride on hurricane winds and waters.
The devices are a departure from current technology, which uses hurricane reconnaissance aircraft to punch through a storm’s eye wall and release dropsondes, sensors that free-fall and might or might not collect helpful data. Underwater data are even more difficult to collect today, although just as important, considering that the warm, moist air on the ocean surface provides fuel for hurricanes....
Autonomous flying drones like this one are the result of research by Kamran Mohseni and graduate researchers with the Institute for Networked Autonomous Systems in the department of mechanical and aerospace engineering at the University of Florida. Photo taken May 30, 2013. Photo by Eric Zamora, University of Florida
Labels:
hurricanes,
monitoring,
technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment