Tuesday, June 11, 2013
How do you feed 9 billion people?
Michigan State University Today: An international team of scientists has developed crop models to better forecast food production to feed a growing population – projected to reach 9 billion by mid-century – in the face of climate change.
In a paper appearing in Nature Climate Change, members of the Agricultural Model Intercomparison and Improvement Project unveiled an all-encompassing modeling system that integrates multiple crop simulations with improved climate change models. AgMIP’s effort has produced new knowledge that better predicts global wheat yields while reducing political and socio-economic influences that can skew data and planning efforts, said Bruno Basso, Michigan State University ecosystem scientist and AgMIP member.
“Quantifying uncertainties is an important step to build confidence in future yield forecasts produced by crop models,” said Basso, with MSU’s geological sciences department and Kellogg Biological Station. “By using an ensemble of crop and climate models, we can understand how increased greenhouse gases in the atmosphere, along with temperature increases and precipitation changes, will affect wheat yield globally.”
The improved crop models can help guide the world’s developed and developing countries as they adapt to changing climate and create policies to improve food security and feed more people, he added.
Basso, part of MSU’s Global Water Initiative, and his team of researchers developed the System Approach for Land-Use Sustainability model. SALUS is a new generation crop tool to forecast crop, soil, water, nutrient conditions in current and future climates. It also can evaluate crop rotations, planting dates, irrigation and fertilizer use and project crop yields and their impact on the land....
A wheat field in Poland, shot by Ondrej.konicek, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
In a paper appearing in Nature Climate Change, members of the Agricultural Model Intercomparison and Improvement Project unveiled an all-encompassing modeling system that integrates multiple crop simulations with improved climate change models. AgMIP’s effort has produced new knowledge that better predicts global wheat yields while reducing political and socio-economic influences that can skew data and planning efforts, said Bruno Basso, Michigan State University ecosystem scientist and AgMIP member.
“Quantifying uncertainties is an important step to build confidence in future yield forecasts produced by crop models,” said Basso, with MSU’s geological sciences department and Kellogg Biological Station. “By using an ensemble of crop and climate models, we can understand how increased greenhouse gases in the atmosphere, along with temperature increases and precipitation changes, will affect wheat yield globally.”
The improved crop models can help guide the world’s developed and developing countries as they adapt to changing climate and create policies to improve food security and feed more people, he added.
Basso, part of MSU’s Global Water Initiative, and his team of researchers developed the System Approach for Land-Use Sustainability model. SALUS is a new generation crop tool to forecast crop, soil, water, nutrient conditions in current and future climates. It also can evaluate crop rotations, planting dates, irrigation and fertilizer use and project crop yields and their impact on the land....
A wheat field in Poland, shot by Ondrej.konicek, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Labels:
agriculture,
crops,
food security,
modeling
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment