Thursday, March 3, 2011
Shrinking tundra, advancing forests: how the Arctic will look by century's end
EurekAlert: Imagine the vast, empty tundra in Alaska and Canada giving way to trees, shrubs and plants typical of more southerly climates. Imagine similar changes in large parts of Eastern Europe, northern Asia and Scandinavia, as needle-leaf and broadleaf forests push northward into areas once unable to support them. Imagine part of Greenland's ice cover, once thought permanent, receding and leaving new tundra in its wake.
Those changes are part of a reorganization of Arctic climates anticipated to occur by the end of the 21st century, as projected by a team of University of Nebraska-Lincoln and South Korean climatologists. In an article to be published in a forthcoming issue of the scientific journal Climate Dynamics, the research team analyzed 16 global climate models from 1950 to 2099 and combined it with more than 100 years of observational data to evaluate what climate change might mean to the Arctic's sensitive ecosystems by the dawn of the 22nd century.
The study is one of the first to apply a specific climate classification system to a comprehensive examination of climate changes throughout the Arctic by using both observations and a collection of projected future climate changes, said Song Feng, research assistant professor in UNL's School of Natural Resources and the study's lead author.
Based on the climate projections, the new study shows that the areas of the Arctic now dominated by polar and sub-polar climate types will decline and will be replaced by more temperate climates – changes that could affect a quarter to nearly half of the Arctic, depending on future greenhouse gas emission scenarios, by the year 2099.
Changes to Arctic vegetation will naturally follow shifts in the region's climates: Tundra coverage would shrink by 33 to 44 percent by the end of the century, while temperate climate types that support coniferous forests and needle-leaf trees would push northward into the breach, the study shows.
"The expansion of forest may amplify global warming, because the newly forested areas can reduce the surface reflectivity, thereby further warming the Arctic," Feng said. "The shrinkage of tundra and expansion of forest may also impact the habitat for wildlife and local residents."…
Area of the Arctic National Wildlife Refuge coastal plain, looking south toward the Brooks Range mountains. US Fish and Wildlife Service photo
Those changes are part of a reorganization of Arctic climates anticipated to occur by the end of the 21st century, as projected by a team of University of Nebraska-Lincoln and South Korean climatologists. In an article to be published in a forthcoming issue of the scientific journal Climate Dynamics, the research team analyzed 16 global climate models from 1950 to 2099 and combined it with more than 100 years of observational data to evaluate what climate change might mean to the Arctic's sensitive ecosystems by the dawn of the 22nd century.
The study is one of the first to apply a specific climate classification system to a comprehensive examination of climate changes throughout the Arctic by using both observations and a collection of projected future climate changes, said Song Feng, research assistant professor in UNL's School of Natural Resources and the study's lead author.
Based on the climate projections, the new study shows that the areas of the Arctic now dominated by polar and sub-polar climate types will decline and will be replaced by more temperate climates – changes that could affect a quarter to nearly half of the Arctic, depending on future greenhouse gas emission scenarios, by the year 2099.
Changes to Arctic vegetation will naturally follow shifts in the region's climates: Tundra coverage would shrink by 33 to 44 percent by the end of the century, while temperate climate types that support coniferous forests and needle-leaf trees would push northward into the breach, the study shows.
"The expansion of forest may amplify global warming, because the newly forested areas can reduce the surface reflectivity, thereby further warming the Arctic," Feng said. "The shrinkage of tundra and expansion of forest may also impact the habitat for wildlife and local residents."…
Area of the Arctic National Wildlife Refuge coastal plain, looking south toward the Brooks Range mountains. US Fish and Wildlife Service photo
Labels:
arctic,
forests,
prediction,
scenarios,
tundra
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment