Saturday, March 5, 2011
Rising CO2 is causing plants to release less water to the atmosphere
Indiana University Newsroom: As carbon dioxide levels have risen during the last 150 years, the density of pores that allow plants to breathe has dwindled by 34 percent, restricting the amount of water vapor the plants release to the atmosphere, report scientists from Indiana University Bloomington and Utrecht University in the Netherlands in an upcoming issue of the Proceedings of the National Academy of Sciences…
In a separate paper, also to be published by PNAS, many of the same scientists describe a model they devised that predicts doubling today's carbon dioxide levels will dramatically reduce the amount of water released by plants. The scientists gathered their data from a diversity of plant species in Florida, including living individuals as well as samples extracted from herbarium collections and peat formations 100 to 150 years old.
"The increase in carbon dioxide by about 100 parts per million has had a profound effect on the number of stomata and, to a lesser extent, the size of the stomata," said Research Scientist in Biology and Professor Emeritus in Geology David Dilcher, the two papers' sole American coauthor. "Our analysis of that structural change shows there's been a huge reduction in the release of water to the atmosphere."
Most plants use a pore-like structure called stomata (singular: stoma) on the undersides of leaves to absorb carbon dioxide from the air. The carbon dioxide is used to build sugars, which can be used by the plant as energy or for incorporation into the plants' fibrous cell walls. Stomata also allow plants to "transpire" water, or release water to the atmosphere. Transpiration helps drive the absorption of water at the roots, and also cools the plants in the same way sweating cools mammals. If there are fewer stomata, or the stomata are closed more of the day, gas exchange will be limited -- transpiration included.
"The carbon cycle is important, but so is the water cycle," Dilcher said. "If transpiration decreases, there may be more moisture in the ground at first, but if there's less rainfall that may mean there's less moisture in ground eventually. This is part of the hyrdrogeologic cycle. Land plants are a crucially important part of it."…
This photo by Emmy Lammertsma on the IU website shows changes in stomata, structures that allow plants to exchange gases with the air. Contemporary plants in Florida have fewer stomata than their ancestors did a few decades ago.
In a separate paper, also to be published by PNAS, many of the same scientists describe a model they devised that predicts doubling today's carbon dioxide levels will dramatically reduce the amount of water released by plants. The scientists gathered their data from a diversity of plant species in Florida, including living individuals as well as samples extracted from herbarium collections and peat formations 100 to 150 years old.
"The increase in carbon dioxide by about 100 parts per million has had a profound effect on the number of stomata and, to a lesser extent, the size of the stomata," said Research Scientist in Biology and Professor Emeritus in Geology David Dilcher, the two papers' sole American coauthor. "Our analysis of that structural change shows there's been a huge reduction in the release of water to the atmosphere."
Most plants use a pore-like structure called stomata (singular: stoma) on the undersides of leaves to absorb carbon dioxide from the air. The carbon dioxide is used to build sugars, which can be used by the plant as energy or for incorporation into the plants' fibrous cell walls. Stomata also allow plants to "transpire" water, or release water to the atmosphere. Transpiration helps drive the absorption of water at the roots, and also cools the plants in the same way sweating cools mammals. If there are fewer stomata, or the stomata are closed more of the day, gas exchange will be limited -- transpiration included.
"The carbon cycle is important, but so is the water cycle," Dilcher said. "If transpiration decreases, there may be more moisture in the ground at first, but if there's less rainfall that may mean there's less moisture in ground eventually. This is part of the hyrdrogeologic cycle. Land plants are a crucially important part of it."…
This photo by Emmy Lammertsma on the IU website shows changes in stomata, structures that allow plants to exchange gases with the air. Contemporary plants in Florida have fewer stomata than their ancestors did a few decades ago.
Labels:
atmosphere,
carbon,
science,
water
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment