….. .A new study led by the Pacific Northwest (PNW) Research Station addresses this critical information gap and represents the first direct evidence of the toll wildfire can take on forest soil layers. It draws on data from the 2002 Biscuit Fire, which scorched some 500,000 acres in southwest
…[The team] … found that the combustion of the organic layer at the soil’s surface, including woody debris, caused intense, 1,300 °F-plus temperatures, which, in turn, displaced considerable amounts of carbon and nitrogen from the underlying mineral soil layer and left mostly ash behind. What was more surprising to the researchers was how these organic materials may have been lost. Some carbon and nitrogen were lost as gases—consisting mostly of carbon dioxide, nitrogen dioxide, and water vapor—and some in an inch of fine mineral-soil particles, which disappeared and left behind a crust of rocks.
…The loss of topsoil and carbon from soil can negatively affect a range of processes, Bormann said, including nutrient retention and water infiltration. In the absence of special nitrogen-fixing plants, which are capable of converting atmospheric nitrogen into nitrogen compounds for growth, losses of nitrogen in the order of what he and his colleagues documented would require at least a century to be reversed.
Equally disconcerting is the role these released organic materials might have on the atmosphere, especially in the face of a warming climate. The burning of soil by wildfire may contribute to global warming, in the short term, by releasing carbon as a greenhouse gas and, in the long term, by reducing soil productivity through losses of organic matter and nutrients….
The 2002 Biscuit Fire, image via MODIS/NASA
No comments:
Post a Comment