Friday, August 15, 2014
Antarctica could raise sea level faster than previously thought
Terra Daily via SPX: The results reproduce Antarctica's recent contribution to sea level rise as observed by satellites in the last two decades and show that the ice continent could become the largest contributor to sea level rise much sooner than previously thought.
"If greenhouse gases continue to rise as before, ice discharge from Antarctica could raise the global ocean by an additional 1 to 37 centimeters in this century already," says lead author Anders Levermann. "Now this is a big range - which is exactly why we call it a risk: Science needs to be clear about the uncertainty, so that decision makers at the coast and in coastal megacities like Shanghai or New York can consider the potential implications in their planning processes," says Levermann.
The scientists analyzed how rising global mean temperatures resulted in a warming of the ocean around Antarctica, thus influencing the melting of the Antarctic ice shelves.
While Antarctica currently contributes less than 10 percent to global sea level rise and is a minor contributor compared to the thermal expansion of the warming oceans and melting mountain glaciers, it is Greenland and especially the Antarctic ice sheets with their huge volume of ice that are expected to be the major contributors to future long-term sea level rise. The marine ice sheets in West Antarctica alone have the potential to elevate sea level by several meters - over several centuries.
According to the study, the computed projections for this century's sea level contribution are significantly higher than the latest IPCC projections on the upper end. Even in a scenario of strict climate policies limiting global warming in line with the 2 C target, the contribution of Antarctica to global sea level rise covers a range of 0 to 23 centimeters.
"Rising sea level is widely regarded as a current and ongoing result of climate change that directly affects hundreds of millions of coastal dwellers around the world and indirectly affects billions more that share its financial costs," says co-author Robert Bindschadler from the NASA Goddard Space Flight Center....
"If greenhouse gases continue to rise as before, ice discharge from Antarctica could raise the global ocean by an additional 1 to 37 centimeters in this century already," says lead author Anders Levermann. "Now this is a big range - which is exactly why we call it a risk: Science needs to be clear about the uncertainty, so that decision makers at the coast and in coastal megacities like Shanghai or New York can consider the potential implications in their planning processes," says Levermann.
The scientists analyzed how rising global mean temperatures resulted in a warming of the ocean around Antarctica, thus influencing the melting of the Antarctic ice shelves.
While Antarctica currently contributes less than 10 percent to global sea level rise and is a minor contributor compared to the thermal expansion of the warming oceans and melting mountain glaciers, it is Greenland and especially the Antarctic ice sheets with their huge volume of ice that are expected to be the major contributors to future long-term sea level rise. The marine ice sheets in West Antarctica alone have the potential to elevate sea level by several meters - over several centuries.
According to the study, the computed projections for this century's sea level contribution are significantly higher than the latest IPCC projections on the upper end. Even in a scenario of strict climate policies limiting global warming in line with the 2 C target, the contribution of Antarctica to global sea level rise covers a range of 0 to 23 centimeters.
"Rising sea level is widely regarded as a current and ongoing result of climate change that directly affects hundreds of millions of coastal dwellers around the world and indirectly affects billions more that share its financial costs," says co-author Robert Bindschadler from the NASA Goddard Space Flight Center....
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment