Thursday, August 22, 2013
Dams destabilize river food webs: Lessons from the Grand Canyon
A press release from The Cary Institute in Millbrook, New York: Managing fish in human-altered rivers is a challenge because their food webs are sensitive to environmental disturbance. So reports a new study in the journal Ecological Monographs, based on an exhaustive three-year analysis of the Colorado River in Glen and Grand Canyons.
Food webs are used to map feeding relationships. By describing the structure of these webs, scientists can predict how plants and animals living in an ecosystem will respond to change. Coauthor Dr. Emma Rosi-Marshall, an aquatic ecologist at the Cary Institute of Ecosystem Studies, comments, "Given the degraded state of the world's rivers, insight into food webs is essential to conserving endangered animals, improving water quality, and managing productive fisheries."
The project – which relied on a team of more than 10 researchers from the Cary Institute of Ecosystem Studies, Montana State University, Idaho State University, University of Wyoming, U.S. Geological Survey, and Loyola University of Chicago – assessed six sites on the Colorado River, many so remote they required two-week boat trips through the canyon.
Study sites were distributed along a 240-mile stretch downstream of Glen Canyon Dam, which was completed in 1963 for water delivery and hydroelectric power needs. During the three-year study, samples of over 3,600 animal diets and 4,200 invertebrate populations were collected and processed. Among the team's findings: following an experimental flood, sites near the dam had the most dramatic changes in the structure and function of their food webs.
Lead author Dr. Wyatt Cross of Montana State University comments, "Glen Canyon Dam has transformed the ecology of the Colorado River. Immediately downstream, cold, low-sediment waters have favored exotic plants and animals that haven't co-evolved with native species. We now see reduced biodiversity and novel species interactions that have led to the instability of these river food webs."
Near Glen Canyon Dam, the researchers found food webs dominated by invasive New Zealand mud snails and non-native rainbow trout, with large mismatches in the food web and only a small percentage of available invertebrates eaten by fish. In contrast, downstream food webs had more native fish species, and a less productive invertebrate fauna that was efficiently consumed by fish, including a federally-listed endangered species, the humpback chub....
A panorama of the Grand Canyon, shot by Dschwen, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Food webs are used to map feeding relationships. By describing the structure of these webs, scientists can predict how plants and animals living in an ecosystem will respond to change. Coauthor Dr. Emma Rosi-Marshall, an aquatic ecologist at the Cary Institute of Ecosystem Studies, comments, "Given the degraded state of the world's rivers, insight into food webs is essential to conserving endangered animals, improving water quality, and managing productive fisheries."
The project – which relied on a team of more than 10 researchers from the Cary Institute of Ecosystem Studies, Montana State University, Idaho State University, University of Wyoming, U.S. Geological Survey, and Loyola University of Chicago – assessed six sites on the Colorado River, many so remote they required two-week boat trips through the canyon.
Study sites were distributed along a 240-mile stretch downstream of Glen Canyon Dam, which was completed in 1963 for water delivery and hydroelectric power needs. During the three-year study, samples of over 3,600 animal diets and 4,200 invertebrate populations were collected and processed. Among the team's findings: following an experimental flood, sites near the dam had the most dramatic changes in the structure and function of their food webs.
Lead author Dr. Wyatt Cross of Montana State University comments, "Glen Canyon Dam has transformed the ecology of the Colorado River. Immediately downstream, cold, low-sediment waters have favored exotic plants and animals that haven't co-evolved with native species. We now see reduced biodiversity and novel species interactions that have led to the instability of these river food webs."
Near Glen Canyon Dam, the researchers found food webs dominated by invasive New Zealand mud snails and non-native rainbow trout, with large mismatches in the food web and only a small percentage of available invertebrates eaten by fish. In contrast, downstream food webs had more native fish species, and a less productive invertebrate fauna that was efficiently consumed by fish, including a federally-listed endangered species, the humpback chub....
A panorama of the Grand Canyon, shot by Dschwen, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment