
But the fascinating part is that the change originates in the western Pacific, about 9,000 miles away from the intense storms in the U.S. midsection, Martin says. The mechanism that causes the storms originates during spring or fall when organized complexes of tropical thunderstorms over Indonesia push the subtropical jet stream north, causing it to merge with the polar jet stream.
The subtropical jet stream is a high-altitude band of wind that is normally located around 30 degrees north latitude. The polar jet stream is normally hundreds of miles to the north. Martin calls the resulting band of wind a “superjet.”
Jet streams in the northern hemisphere blow from the west at roughly 140 miles per hour, and are surrounded by a circular whirlwind that looks something like a tornado pushed on its side. The circulating wind at the bottom of the jet stream blows from the south. On the north side, the circulating winds turn vertical, lifting and cooling the air until the water vapor condenses and feeds precipitation.
A superjet and its circulating winds carry roughly twice as much energy as a typical jet stream, Martin says. “When these usually separate jet streams sit atop one another, there tends to be a very strong vertical circulation, which produces clouds, precipitation and tornadoes under the right conditions.”...
A public domain image of a jet stream
No comments:
Post a Comment