Wednesday, August 10, 2011
Up-and-coming forests will remain important carbon sinks
Ohio State University News: The aging forests of the Upper Great Lakes could be considered the baby boomers of the region’s ecosystem. The decline of trees in this area is a cause for concern among policymakers and ecologists who wonder whether the end of the forests’ most productive years means they will no longer offer the benefits they are known for: cleansed air, fertile soil, filtered water and, most important to climate change analysts, carbon storage that offsets greenhouse gas emissions.
A team of ecologists led by Ohio State University researchers says, however, that coming up right underneath the old forests is a new generation of native trees that are younger, more diverse and highly competitive. They represent a vast unknown compared to what ecologists have long theorized about how forests work as carbon sinks, but these researchers expect the next generation to carry on the important work of carbon storage.
“There’s a conventional theory that aging forests, for a variety of reasons, store less carbon over time. We contend that that may be true in certain systems that are less species-rich. But in our forests in the Midwest, the tree species we will end up with are much different from what we started with,” said Peter Curtis, professor and chair of evolution, ecology and organismal biology at Ohio State and a lead investigator on this research.
“We argue that in this case, as forests age, they get rejuvenated with younger individuals of different species – a more complex and diverse community will be replacing the old guard. They may even outdo the boomer generation and be more productive.”
...“The more diverse system can solve problems that are thrown at it by the environment,” Curtis said. “Adaptation is a key word here. As animal and plant species are moving around or changing seasonally, a diverse and resilient ecosystem is going to be much better able to provide ecological niches and the goods and services that we can hope to get from it.”...
The Pere Marquette River, in Michigan's Manistee National Forest in the autumn. Shot by Yetiwriter, Wikimedia Commons, under the Creative Commons Attribution ShareAlike 3.0 License
A team of ecologists led by Ohio State University researchers says, however, that coming up right underneath the old forests is a new generation of native trees that are younger, more diverse and highly competitive. They represent a vast unknown compared to what ecologists have long theorized about how forests work as carbon sinks, but these researchers expect the next generation to carry on the important work of carbon storage.
“There’s a conventional theory that aging forests, for a variety of reasons, store less carbon over time. We contend that that may be true in certain systems that are less species-rich. But in our forests in the Midwest, the tree species we will end up with are much different from what we started with,” said Peter Curtis, professor and chair of evolution, ecology and organismal biology at Ohio State and a lead investigator on this research.
“We argue that in this case, as forests age, they get rejuvenated with younger individuals of different species – a more complex and diverse community will be replacing the old guard. They may even outdo the boomer generation and be more productive.”
...“The more diverse system can solve problems that are thrown at it by the environment,” Curtis said. “Adaptation is a key word here. As animal and plant species are moving around or changing seasonally, a diverse and resilient ecosystem is going to be much better able to provide ecological niches and the goods and services that we can hope to get from it.”...
The Pere Marquette River, in Michigan's Manistee National Forest in the autumn. Shot by Yetiwriter, Wikimedia Commons, under the Creative Commons Attribution ShareAlike 3.0 License
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment