Saturday, January 8, 2011
Scrubbing carbon dioxide from the air and the ocean
Some geoengineering described in the Chemical & Engineering News: Rising levels of atmospheric carbon dioxide affect nature in many ways, including warming temperatures and ocean acidification. New research points toward a solution that could kill two birds with one stone: Remove CO2 from a natural-gas-powered plant's waste gas stream using seawater and mineral calcium carbonate, and then pump the resulting calcium bicarbonate into the sea to neutralize it (Environ. Sci. Technol., DOI: 10.1021/es102671x).
Roughly one-third of anthropogenic CO2 emissions come from burning fossil fuel in electricity plants. Most of the research on mitigating CO2 emissions from these plants has focused on carbon capture and storage. Yet most of those projects are still in the pilot stage and the technology is costly. In the new paper, Greg Rau, a senior researcher with the Institute of Marine Sciences at the University of California, Santa Cruz, and the Lawrence Livermore National Laboratory, instead sequesters CO2 by building on a well-established technology known as wet limestone scrubbing, used by power plants.
Rau built a lab-scale scrubber that used seawater and mineral carbonate to remove CO2 from a simulated flue gas stream. The scrubber worked by pumping CO2 over or through a porous bed of limestone particles sprayed with a continuous flow of water. He found that the process removed up to 97% of the CO2 in the gas. Water hydrated the waste CO2 to produce carbonic acid, which then reacted with, and was neutralized by the limestone. As a result, the CO2 gas transformed into dissolved calcium bicarbonate.
Dumping the dissolved calcium bicarbonate into the ocean would provide a second benefit: The calcium bicarbonate can increase seawater alkalinity, Rau says, by speeding up a natural but very slow process known as carbonate weathering, which captures carbon in the ocean….
A variety of corals form an outcrop on Flynn Reef, part of the Great Barrier Reef near Cairns, Queensland, Australia, shot by Toby Hudson, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Roughly one-third of anthropogenic CO2 emissions come from burning fossil fuel in electricity plants. Most of the research on mitigating CO2 emissions from these plants has focused on carbon capture and storage. Yet most of those projects are still in the pilot stage and the technology is costly. In the new paper, Greg Rau, a senior researcher with the Institute of Marine Sciences at the University of California, Santa Cruz, and the Lawrence Livermore National Laboratory, instead sequesters CO2 by building on a well-established technology known as wet limestone scrubbing, used by power plants.
Rau built a lab-scale scrubber that used seawater and mineral carbonate to remove CO2 from a simulated flue gas stream. The scrubber worked by pumping CO2 over or through a porous bed of limestone particles sprayed with a continuous flow of water. He found that the process removed up to 97% of the CO2 in the gas. Water hydrated the waste CO2 to produce carbonic acid, which then reacted with, and was neutralized by the limestone. As a result, the CO2 gas transformed into dissolved calcium bicarbonate.
Dumping the dissolved calcium bicarbonate into the ocean would provide a second benefit: The calcium bicarbonate can increase seawater alkalinity, Rau says, by speeding up a natural but very slow process known as carbonate weathering, which captures carbon in the ocean….
A variety of corals form an outcrop on Flynn Reef, part of the Great Barrier Reef near Cairns, Queensland, Australia, shot by Toby Hudson, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Labels:
atmosphere,
carbon,
emissions,
geoengineering,
oceans
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment