Monday, January 12, 2009
Dirty snow causes early runoff in Cascades, Rockies
Pacific Northwest National Laboratory: Soot from pollution causes winter snowpacks to warm, shrink and warm some more. This continuous cycle sends snowmelt streaming down mountains as much as a month early, a new study finds. How pollution affects a mountain range's natural water reservoirs is important for water resource managers in the western United States and Canada who plan for hydroelectricity generation, fisheries and farming.
Scientists at the Department of Energy's Pacific Northwest National Laboratory conducted the first-ever study of soot on snow in the western states at a scale that predicted impacts along mountain ranges. They found that soot warms up the snow and the air above it by up to 1.2 degrees Fahrenheit, causing snow to melt.
"If we can project the future -- how much water we'll be getting from the rivers and when -- then we can better plan for its many uses," said atmospheric scientist Yun Qian. "Snowmelt can be up to 75 percent of the water supply, in some regions. These changes can affect the water supply, as well as aggravate winter flooding and summer droughts."
The soot-snow cycle starts when soot, a byproduct of burning fossil fuels, darkens snow it lands upon, which then absorbs more of the sun's energy than clean white snow. The resulting thinner snowpack reflects less sunlight back into the atmosphere and further warms the area, continuing the snowmelt cycle.
…Overall, doubling the dimming of the snow did not lead to twice as high temperature changes -- it led to an approximate 50 percent increase in the snow surface temperature. The drop in snow accumulation, however, more than doubled in some areas. Snowpack over the central Rockies and southern Alberta, for example, dropped two to 50 millimeters over the mountains during late spring and early winter. The most drastic changes occurred in March, the model showed.
…Studies like this one start to unmask pollution's role in the changing climate. While greenhouse gases work unseen, soot bares its dark nature, with a cloak that slowly steals summertime's snow.
When soot from pollution settles on pristine snow, it can increase snowmelt in the winter month of February (top left, red) and decrease it in the late spring (May -- bottom right, blue). Graphs from Pacific Northwest National Laboratory's website
Scientists at the Department of Energy's Pacific Northwest National Laboratory conducted the first-ever study of soot on snow in the western states at a scale that predicted impacts along mountain ranges. They found that soot warms up the snow and the air above it by up to 1.2 degrees Fahrenheit, causing snow to melt.
"If we can project the future -- how much water we'll be getting from the rivers and when -- then we can better plan for its many uses," said atmospheric scientist Yun Qian. "Snowmelt can be up to 75 percent of the water supply, in some regions. These changes can affect the water supply, as well as aggravate winter flooding and summer droughts."
The soot-snow cycle starts when soot, a byproduct of burning fossil fuels, darkens snow it lands upon, which then absorbs more of the sun's energy than clean white snow. The resulting thinner snowpack reflects less sunlight back into the atmosphere and further warms the area, continuing the snowmelt cycle.
…Overall, doubling the dimming of the snow did not lead to twice as high temperature changes -- it led to an approximate 50 percent increase in the snow surface temperature. The drop in snow accumulation, however, more than doubled in some areas. Snowpack over the central Rockies and southern Alberta, for example, dropped two to 50 millimeters over the mountains during late spring and early winter. The most drastic changes occurred in March, the model showed.
…Studies like this one start to unmask pollution's role in the changing climate. While greenhouse gases work unseen, soot bares its dark nature, with a cloak that slowly steals summertime's snow.
When soot from pollution settles on pristine snow, it can increase snowmelt in the winter month of February (top left, red) and decrease it in the late spring (May -- bottom right, blue). Graphs from Pacific Northwest National Laboratory's website
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment