Friday, January 30, 2009
Analyzing the genome of a heat and drought resistant cereal plant
German Research Center for Environmental Health: The global climate is changing, and this change is already impacting food supply and security. People living in regions already affected by aridity need plants that can thrive / grow under dry conditions.
One example is sorghum: Also known as milo, durra, or broomcorn, sorghum is a grass species that can grow up to five meters in height and is extremely resistant to aridity and hot conditions. The grass, which originates from Africa, can thrive under conditions and locations where other cereal plants cannot survive due to lack of water.
….As part of an international consortium of scientists, researchers at Helmholtz Zentrum München are analyzing the genes of sorghum, the first plant of African origin whose genome has been sequenced. Dr. Klaus Mayer of the Institute of Bioinformatics and Systems Biology of the Helmholtz Zentrum München described the scientists’ research goal: ”We want to elucidate the functional and structural genomics of sorghum.“ He went on to explain: ”That is the prerequisite for making this important grain even more productive through targeted breeding strategies. As German Research Center for Environmental Health, sustaining the food supply is one of our most important research topics. That is why we are trying to learn something about the molecular basis of the plant’s pronounced drought tolerance in order to apply this knowledge to other crop plants in our latitude zone as well.
…Due to biochemical and morphological specialization, such plants use a special kind of photosynthesis (in which first a molecule with four carbon atoms is formed, thus the name). They can assimilate carbon at higher temperatures and more efficiently than ”C3 plants“ and are especially suitable for the production of biomass for energy…
Sorghum, USDA
One example is sorghum: Also known as milo, durra, or broomcorn, sorghum is a grass species that can grow up to five meters in height and is extremely resistant to aridity and hot conditions. The grass, which originates from Africa, can thrive under conditions and locations where other cereal plants cannot survive due to lack of water.
….As part of an international consortium of scientists, researchers at Helmholtz Zentrum München are analyzing the genes of sorghum, the first plant of African origin whose genome has been sequenced. Dr. Klaus Mayer of the Institute of Bioinformatics and Systems Biology of the Helmholtz Zentrum München described the scientists’ research goal: ”We want to elucidate the functional and structural genomics of sorghum.“ He went on to explain: ”That is the prerequisite for making this important grain even more productive through targeted breeding strategies. As German Research Center for Environmental Health, sustaining the food supply is one of our most important research topics. That is why we are trying to learn something about the molecular basis of the plant’s pronounced drought tolerance in order to apply this knowledge to other crop plants in our latitude zone as well.
…Due to biochemical and morphological specialization, such plants use a special kind of photosynthesis (in which first a molecule with four carbon atoms is formed, thus the name). They can assimilate carbon at higher temperatures and more efficiently than ”C3 plants“ and are especially suitable for the production of biomass for energy…
Sorghum, USDA
Labels:
agriculture,
drought,
science
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment