Thursday, September 11, 2008

NASA study illustrates how global peak oil could impact climate

NASA: The burning of fossil fuels -- notably coal, oil and gas -- has accounted for about 80 percent of the rise of atmospheric carbon dioxide since the pre-industrial era. Now, NASA researchers have identified feasible emission scenarios that could keep carbon dioxide below levels that some scientists have called dangerous for climate.

When and how global oil production will peak has been debated, making it difficult to anticipate emissions from the burning of fuel and to precisely estimate its impact on climate. To better understand how emissions might change in the future, Pushker Kharecha and James Hansen of NASA's Goddard Institute for Space Studies in New York considered a wide range of fossil fuel consumption scenarios. The research, published Aug. 5 in the American Geophysical Union's Global Biogeochemical Cycles, shows that the rise in carbon dioxide from burning fossil fuels can be kept below harmful levels as long as emissions from coal are phased out globally within the next few decades.

"This is the first paper in the scientific literature that explicitly melds the two vital issues of global peak oil production and human-induced climate change," Kharecha said. "We're illustrating the types of action needed to get to target carbon dioxide levels."

…To better understand the possible trajectory of future carbon dioxide, Kharecha and Hansen devised five carbon dioxide emissions scenarios that span the years 1850-2100. Each scenario reflects a different estimate for the global production peak of fossil fuels, the timing of which depends on reserve size, recoverability and technology.….Next, the team used a simplified mathematical model, called the Bern carbon cycle model, to convert carbon dioxide emissions from each scenario into estimates of future carbon dioxide concentrations in the atmosphere.

The unconstrained "business as usual" scenario resulted in a level of atmospheric carbon dioxide that more than doubled the preindustrial level and from about 2035 onward levels exceed the 450 parts per million threshold of this study. Even when low-end estimates of reserves were assumed, the threshold was exceeded from about 2050 onwards. However, the other four scenarios resulted in carbon dioxide levels that peaked in various years but all fell below the prescribed cap of 450 parts per million by about 2080 at the latest, with levels in two of the scenarios always staying below the threshold.

The researchers suggest that the results illustrated by each scenario have clear implications for reducing carbon dioxide emissions from coal, as well as "unconventional" fuels such as methane hydrates and tar sands, all of which contain much more fossil carbon than conventional oil and gas.

"Because coal is much more plentiful than oil and gas, reducing coal emissions is absolutely essential to avoid 'dangerous' climate change brought about by atmospheric carbon dioxide concentration exceeding 450 parts per million," Kharecha said. "The most important mitigation strategy we recommend – a phase-out of carbon dioxide emissions from coal within the next few decades – is feasible using current or near-term technologies."

Satellites show sources and sinks of atmospheric carbon dioxide across Earth, measured here in 2003. High concentrations are shown in red and lower concentrations are shown in blue. Credit: NASA

No comments: