Tuesday, June 4, 2013
Improving 'crop per drop' could boost food and water security
Seed Daily via SPX: Improvements in crop water productivity - the amount of food produced per unit of water consumed - have the potential to improve both food security and water sustainability in many parts of the world, according to a study published online in Environmental Research Letters May 29 by scientists with the University of Minnesota's Institute on the Environment (IonE) and the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn, Germany.
Led by IonE postdoctoral research scholar Kate A. Brauman, the research team analyzed crop production, water use and crop water productivity by climatic zone for 16 staple food crops: wheat, maize, rice, barley, rye, millet, sorghum, soybean, sunflower, potato, cassava, sugarcane, sugar beet, oil palm, rapeseed (canola) and groundnut (peanut).
Together these crops constitute 56 percent of global crop production by tonnage, 65 percent of crop water consumption, and 68 percent of all cropland by area. The study is the first of its kind to look at water productivity for this many crops at a global scale.
The wide range of variation in crop water productivity in places that have similar climates means that there are lots of opportunities for improving the trade-off between food and water.
And the implications of doing so are substantial: The researchers calculated that in drier regions, bringing up the very lowest performers to just the 20th percentile could increase annual production on rain-fed cropland enough to provide food for an estimated 110 million people without increasing water use or using additional cropland....
An aerial shot of a sprinkler irrigating a field, shot by Martina Nolte, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Germany license
Led by IonE postdoctoral research scholar Kate A. Brauman, the research team analyzed crop production, water use and crop water productivity by climatic zone for 16 staple food crops: wheat, maize, rice, barley, rye, millet, sorghum, soybean, sunflower, potato, cassava, sugarcane, sugar beet, oil palm, rapeseed (canola) and groundnut (peanut).
Together these crops constitute 56 percent of global crop production by tonnage, 65 percent of crop water consumption, and 68 percent of all cropland by area. The study is the first of its kind to look at water productivity for this many crops at a global scale.
The wide range of variation in crop water productivity in places that have similar climates means that there are lots of opportunities for improving the trade-off between food and water.
And the implications of doing so are substantial: The researchers calculated that in drier regions, bringing up the very lowest performers to just the 20th percentile could increase annual production on rain-fed cropland enough to provide food for an estimated 110 million people without increasing water use or using additional cropland....
An aerial shot of a sprinkler irrigating a field, shot by Martina Nolte, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Germany license
Labels:
agriculture,
crops,
science,
water
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment