Friday, September 28, 2012

Salt marshes may cool climate by trapping carbon As the planet warms up, salt marshes could play a role in capturing and removing carbon dioxide from the atmosphere, perhaps slowing the rate of climate change, a study suggests.

Carbon dioxide acts as an atmospheric blanket, trapping the Earth’s heat. Over time, an abundance of carbon dioxide can change the global climate, according to generally accepted scientific theory. A warmer climate melts polar ice, causing sea levels to rise. A large portion of the carbon dioxide in the atmosphere is produced by human activities, primarily the burning of fossil fuels to energize a rapidly growing world human population.

 “We predict that marshes will absorb some of that carbon dioxide, and if other coastal ecosystems—such as seagrasses and mangroves—respond similarly, there might be a little less warming,” says the study’s lead author, Matt Kirwan, a research assistant professor of environmental sciences at the University of Virginia.

Made up primarily of grasses, salt marshes are important coastal ecosystems, helping to protect shorelines from storms and providing habitat for a diverse range of wildlife, from birds to mammals, shell- and fin-fishes, and mollusks. They also build up coastal elevations by trapping sediment during floods, and produce new soil from roots and decaying organic matter.

“One of the cool things about salt marshes is that they are perhaps the best example of an ecosystem that actually depends on carbon accumulation to survive climate change: The accumulation of roots in the soil builds their elevation, keeping the plants above the water,” Kirwan says.

Salt marshes store enormous quantities of carbon, essential to plant productivity, by, in essence, breathing in the atmospheric carbon and then using it to grow, flourish, and increase the height of the soil. Even as the grasses die, the carbon remains trapped in the sediment. The researchers’ model predicts that under faster sea-level rise rates, salt marshes could bury up to four times as much carbon as they do now....

A salt marsh near Hayward Shoreline Interpretive Center building, adjacent to highway 92, Hayward, California, shot by Mercurywoodrose, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license

No comments: