Saturday, June 16, 2012

Hindcasting helps scientists improve forecasts for life on Earth

UC Berkeley News Center: Earth’s changing environment and rapidly growing population are pushing plants and animals out of their native habitats, but current models that predict how this will affect the ecosystem are little more than educated guesses. And when the models have been tested, they’ve been wildly inaccurate.

A large and diverse group of scientists at UC Berkeley has launched a unique program, the Berkeley Initiative in Global Change Biology (BiGCB), to improve the reliability and accuracy of these models. The experts are employing hindcasting — “predicting” what happened during past episodes of climate change — to help them develop and test new models that will improve forecasting.

“The only way to test a model and improve forecasting is through hindcasting,” said Charles Marshall, director of the University of California Museum of Paleontology and a UC Berkeley professor of integrative biology. “Once we have a tested model that accurately tells us what is likely to happen to biological systems, we can construct policies to minimize unwanted impacts.”

...One of the leaders of BiGCB, Marshall said that the university’s large museum collections — priceless records of how animals and plants adapted to past ecological change — will allow scientists to travel back in time to study how previous periods of global change, similar to what is now occurring, affected the biosphere. Those data can then be used to test and improve current predictive models and eventually come up with forecasting tools for policy makers and scientists alike....

Specimens like this 47-year-old honey bee from the Essig Museum collection can help researchers understand how plant and animal populations have changed over the past 100 years. The pollen in the basket on the bee’s hind legs is very robust over decades and can provide information about what plants were growing where the bees foraged. The bee’s DNA can tell how insect populations have changed over the last 50 years. From the UC Berkeley website

No comments: