Sunday, May 20, 2012
Pollution teams with thunderclouds to warm atmosphere
Pacific Northwest National Laboratory News Center: Pollution is warming the atmosphere through summer thunderstorm clouds, according to a computational study published May 10 in Geophysical Research Letters. How much the warming effect of these clouds offsets the cooling that other clouds provide is not yet clear. To find out, researchers need to incorporate this new-found warming into global climate models.
Pollution strengthens thunderstorm clouds, causing their anvil-shaped tops to spread out high in the atmosphere and capture heat — especially at night, said lead author and climate researcher Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory.
"Global climate models don't see this effect because thunderstorm clouds simulated in those models do not include enough detail," said Fan. "The large amount of heat trapped by the pollution-enhanced clouds could potentially impact regional circulation and modify weather systems."
Clouds are one of the most poorly understood components of Earth's climate system. Called deep convective clouds, thunderstorm clouds reflect a lot of the sun's energy back into space, trap heat that rises from the surface, and return evaporated water back to the surface as rain, making them an important part of the climate cycle.
...Previous work showed that when it's not too windy, pollution leads to bigger clouds. This occurs because more pollution particles divide up the available water for droplets, leading to a higher number of smaller droplets that are too small to rain. Instead of raining, the small droplets ride the updrafts higher, where they freeze and absorb more water vapor. Collectively, these events lead to bigger, more vigorous convective clouds that live longer.
Now, researchers from PNNL, Hebrew University in Jerusalem and the University of Maryland took to high-performance computing to study the invigoration effect on a regional scale. Fan and colleagues found that for the warm summer thunderstorms, pollution led to stronger storms with larger anvils....
An anvil-shaped cumulus cloud and alto-cumulus, shot by Fir0002, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Pollution strengthens thunderstorm clouds, causing their anvil-shaped tops to spread out high in the atmosphere and capture heat — especially at night, said lead author and climate researcher Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory.
"Global climate models don't see this effect because thunderstorm clouds simulated in those models do not include enough detail," said Fan. "The large amount of heat trapped by the pollution-enhanced clouds could potentially impact regional circulation and modify weather systems."
Clouds are one of the most poorly understood components of Earth's climate system. Called deep convective clouds, thunderstorm clouds reflect a lot of the sun's energy back into space, trap heat that rises from the surface, and return evaporated water back to the surface as rain, making them an important part of the climate cycle.
...Previous work showed that when it's not too windy, pollution leads to bigger clouds. This occurs because more pollution particles divide up the available water for droplets, leading to a higher number of smaller droplets that are too small to rain. Instead of raining, the small droplets ride the updrafts higher, where they freeze and absorb more water vapor. Collectively, these events lead to bigger, more vigorous convective clouds that live longer.
Now, researchers from PNNL, Hebrew University in Jerusalem and the University of Maryland took to high-performance computing to study the invigoration effect on a regional scale. Fan and colleagues found that for the warm summer thunderstorms, pollution led to stronger storms with larger anvils....
An anvil-shaped cumulus cloud and alto-cumulus, shot by Fir0002, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Labels:
atmosphere,
clouds,
modeling,
pollution,
science
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment