Wednesday, April 8, 2009
Climate change to spur rapid shifts in fire hotspots, projects new analysis
University of California at Berkeley: Climate change will bring about major shifts in worldwide fire patterns, and those changes are coming fast, according to a first-of-its-kind analysis led by researchers at the University of California, Berkeley, in collaboration with scientists at Texas Tech University.
….Researchers used thermal-infrared sensor data obtained between 1996 and 2006 from European Space Agency satellites in their study of pyrogeography - the distribution and behavior of wildfire - on a global scale. They not only got a global view of where wildfires occur, but they determined the common environmental characteristics associated with the risk of those fires. They then incorporated those variables into projections for how future climate scenarios will impact wildfire occurrence worldwide. The research was conducted with support from The Nature Conservancy as part of the organization's effort to integrate information about global fire regimes into planning for biodiversity conservation.
"This is the first attempt to quantitatively model why we see fire where we see it across the entire planet," said study author Max Moritz, assistant cooperative extension specialist in wildland fire at UC Berkeley's College of Natural Resources and co-director of the UC Center for Fire Research & Outreach. "What is startling in these findings is the relatively rapid rate at which we're likely to see very broad-scale changes in fire activity for large parts of the planet."
Moritz said the two essential suites of variables needed for fires describe the presence of sufficient vegetation to burn and the window in time when conditions are hot and dry enough for ignition to occur. When the researchers used those environmental relationships and future climate projections to look at how these factors might change over time, under both lower and mid-range emissions scenarios developed by the Intergovernmental Panel on Climate Change, they found that much of the planet will incur changes in fire activity, and this includes increases as well as decreases in the likelihood of fire.
…"Fire patterns are going to change, and we need to start thinking about what that means for ecosystems, and what our response should be," said the paper's lead author, Meg Krawchuk, a UC Berkeley post-doctoral fellow sponsored by The Nature Conservancy and by Canada's National Sciences & Engineering Research Council. "Fire will be a major driver of change. A large decrease in fire activity is not necessarily a good thing for an ecosystem that has adapted to periodic wildfires. Some species of trees rely upon fires occurring at specific times to regenerate, for example, so changes in a fire regime have the potential to dramatically alter the landscape over time."...
This map shows the invasion (orange) and retreat (blue) of fire risk projected for 2010-2039 under a new climate model that looks at wildfire patterns on a global scale.(Meg Krawchuk, UC Berkeley)
….Researchers used thermal-infrared sensor data obtained between 1996 and 2006 from European Space Agency satellites in their study of pyrogeography - the distribution and behavior of wildfire - on a global scale. They not only got a global view of where wildfires occur, but they determined the common environmental characteristics associated with the risk of those fires. They then incorporated those variables into projections for how future climate scenarios will impact wildfire occurrence worldwide. The research was conducted with support from The Nature Conservancy as part of the organization's effort to integrate information about global fire regimes into planning for biodiversity conservation.
"This is the first attempt to quantitatively model why we see fire where we see it across the entire planet," said study author Max Moritz, assistant cooperative extension specialist in wildland fire at UC Berkeley's College of Natural Resources and co-director of the UC Center for Fire Research & Outreach. "What is startling in these findings is the relatively rapid rate at which we're likely to see very broad-scale changes in fire activity for large parts of the planet."
Moritz said the two essential suites of variables needed for fires describe the presence of sufficient vegetation to burn and the window in time when conditions are hot and dry enough for ignition to occur. When the researchers used those environmental relationships and future climate projections to look at how these factors might change over time, under both lower and mid-range emissions scenarios developed by the Intergovernmental Panel on Climate Change, they found that much of the planet will incur changes in fire activity, and this includes increases as well as decreases in the likelihood of fire.
…"Fire patterns are going to change, and we need to start thinking about what that means for ecosystems, and what our response should be," said the paper's lead author, Meg Krawchuk, a UC Berkeley post-doctoral fellow sponsored by The Nature Conservancy and by Canada's National Sciences & Engineering Research Council. "Fire will be a major driver of change. A large decrease in fire activity is not necessarily a good thing for an ecosystem that has adapted to periodic wildfires. Some species of trees rely upon fires occurring at specific times to regenerate, for example, so changes in a fire regime have the potential to dramatically alter the landscape over time."...
This map shows the invasion (orange) and retreat (blue) of fire risk projected for 2010-2039 under a new climate model that looks at wildfire patterns on a global scale.(Meg Krawchuk, UC Berkeley)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment