Andrew Dessler and colleagues from
With new observations, the scientists confirmed experimentally what existing climate models had anticipated theoretically. The research team used novel data from the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua satellite to measure precisely the humidity throughout the lowest 10 miles of the atmosphere. That information was combined with global observations of shifts in temperature, allowing researchers to build a comprehensive picture of the interplay between water vapor, carbon dioxide, and other atmosphere-warming gases. The NASA-funded research was published recently in the American Geophysical Union's Geophysical Research Letters.
"Everyone agrees that if you add carbon dioxide to the atmosphere, then warming will result,” Dessler said. “So the real question is, how much warming?" The answer can be found by estimating the magnitude of water vapor feedback. Increasing water vapor leads to warmer temperatures, which causes more water vapor to be absorbed into the air. Warming and water absorption increase in a spiraling cycle.
Water vapor feedback can also amplify the warming effect of other greenhouse gases, such that the warming brought about by increased carbon dioxide allows more water vapor to enter the atmosphere. "The difference in an atmosphere with a strong water vapor feedback and one with a weak feedback is enormous," Dessler said.
…"This study confirms that what was predicted by the models is really happening in the atmosphere," said Eric Fetzer, an atmospheric scientist who works with AIRS data at NASA's Jet Propulsion Laboratory in
The distribution of atmospheric water vapor, a significant greenhouse gas, varies across the globe. During the summer and fall of 2005, this visualization shows that most vapor collects at tropical latitudes, particularly over south Asia, where monsoon thunderstorms swept the gas some 2 miles above the land. Image from NASA's website
No comments:
Post a Comment