Friday, August 21, 2009
NASA's train of satellites helps hurricane research
Klaus Schmidt in Space Fellowship: NASA has several satellites that orbit the Earth one behind the other on the same track. They’re called the “A-Train” and one of the things they study is tropical cyclones. There are also other satellites outside the A-Train that are used to study different aspects of tropical cyclones. The satellites that form the A-Train provide unique information about tropical cyclones, the collective term for tropical depressions, tropical storms, hurricanes and typhoons.
“Hurricanes, typhoons and cyclones are both a curse and a blessing for highly populated tropical and subtropical nations, bringing both terrible destruction and life-sustaining rainfall each year,” said Bill Patzert, climatologist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Many scientists have hypothesized that in the future our warming climate will change hurricane-induced rainfall patterns, perhaps increasing the destructive power of these storms. NASA, NOAA and university scientists are mining the wealth of scientific information from A-Train instruments to improve our understanding of current and future hurricanes. These data will help officials plan for better coastal protection and the most effective public policy.”
The A-Train satellite formation currently consists of five satellites flying in close proximity: Aqua, CloudSat, CALIPSO, PARASOL and Aura. Each satellite in the A-Train crosses the equator within a few minutes of each another at around 1:30 p.m. local time. By combining the different sets of nearly simultaneous observations, scientists are able to gain a better understanding of important parameters related to climate change.
…So why put all of these different satellites in a “train”? By combining the satellites and their data, scientists are able to gain a better understanding of important parameters related to the behavior of hurricanes, in addition to climate change information. The A-Train formation allows for simultaneous coordinated measurements. Data from several different satellites can be used together to obtain comprehensive information about atmospheric components or processes that are happening at the same time. Combining the information collected simultaneously from several sources gives a more complete answer to many questions than would be possible from any one satellite taken alone at different times.
Artist's conception of the CALIPSO satellite, from the space-suited painters at NASA
“Hurricanes, typhoons and cyclones are both a curse and a blessing for highly populated tropical and subtropical nations, bringing both terrible destruction and life-sustaining rainfall each year,” said Bill Patzert, climatologist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Many scientists have hypothesized that in the future our warming climate will change hurricane-induced rainfall patterns, perhaps increasing the destructive power of these storms. NASA, NOAA and university scientists are mining the wealth of scientific information from A-Train instruments to improve our understanding of current and future hurricanes. These data will help officials plan for better coastal protection and the most effective public policy.”
The A-Train satellite formation currently consists of five satellites flying in close proximity: Aqua, CloudSat, CALIPSO, PARASOL and Aura. Each satellite in the A-Train crosses the equator within a few minutes of each another at around 1:30 p.m. local time. By combining the different sets of nearly simultaneous observations, scientists are able to gain a better understanding of important parameters related to climate change.
…So why put all of these different satellites in a “train”? By combining the satellites and their data, scientists are able to gain a better understanding of important parameters related to the behavior of hurricanes, in addition to climate change information. The A-Train formation allows for simultaneous coordinated measurements. Data from several different satellites can be used together to obtain comprehensive information about atmospheric components or processes that are happening at the same time. Combining the information collected simultaneously from several sources gives a more complete answer to many questions than would be possible from any one satellite taken alone at different times.
Artist's conception of the CALIPSO satellite, from the space-suited painters at NASA
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment