Friday, May 24, 2013
Wildland fire emissions, carbon, and climate: Wildfire–climate interactions
An abstract from Science Direct, an article published in Forest Ecology and Management: Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire–climate interactions.
Findings from studies published in recent years have remarkably increased our understanding of fire–climate interactions and improved our capacity to delineate probable future climate change and impacts. Fires are projected to increase in many regions of the globe under a changing climate due to the greenhouse effect. Burned areas in the western US could increase by more than 50% by the middle of this century.
Increased fire activity is not simply an outcome of the changing climate, but also a participant in the change. Smoke particles reduce overall solar radiation absorbed by the Earth’s atmosphere during individual fire events and fire seasons, leading to regional climate effects including reduction in surface temperature, suppression of cloud and precipitation, and enhancement of climate anomalies such as droughts.
Black carbon (BC) in smoke particles displays some different radiation and climate effects by warming the middle and lower atmosphere, leading to a more stable atmosphere. BC also plays a key role in the smoke-snow feedback mechanism. Fire emissions of CO2, on the other hand, are an important atmospheric CO2 source and contribute substantially to the global greenhouse effect.
Future studies should generate a global picture of all aspects of radiative forcing by smoke particles. Better knowledge is needed in space and time variability of smoke particles, evolution of smoke optical properties, estimation of smoke plume height and vertical profiles and their impacts on locations of warming layers, stability structure, clouds and smoke transport, quantification of BC emission factors and optical properties from different forest fuels, and BC’s individual and combined roles with organic carbon.
Finally, understanding the short- and long-term greenhouse effect of fire CO2 emissions, increased capacity to project future fire trends (especially mega-fires), with consideration of climate–fuel–human interactions, and improved fire weather and climate prediction skills (including exploring the SST-fire relations) remain central knowledge needs...
Wildfire smoke at sunset from a 2004 fire in New Mexico, shot by Wnc101496, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Findings from studies published in recent years have remarkably increased our understanding of fire–climate interactions and improved our capacity to delineate probable future climate change and impacts. Fires are projected to increase in many regions of the globe under a changing climate due to the greenhouse effect. Burned areas in the western US could increase by more than 50% by the middle of this century.
Increased fire activity is not simply an outcome of the changing climate, but also a participant in the change. Smoke particles reduce overall solar radiation absorbed by the Earth’s atmosphere during individual fire events and fire seasons, leading to regional climate effects including reduction in surface temperature, suppression of cloud and precipitation, and enhancement of climate anomalies such as droughts.
Black carbon (BC) in smoke particles displays some different radiation and climate effects by warming the middle and lower atmosphere, leading to a more stable atmosphere. BC also plays a key role in the smoke-snow feedback mechanism. Fire emissions of CO2, on the other hand, are an important atmospheric CO2 source and contribute substantially to the global greenhouse effect.
Future studies should generate a global picture of all aspects of radiative forcing by smoke particles. Better knowledge is needed in space and time variability of smoke particles, evolution of smoke optical properties, estimation of smoke plume height and vertical profiles and their impacts on locations of warming layers, stability structure, clouds and smoke transport, quantification of BC emission factors and optical properties from different forest fuels, and BC’s individual and combined roles with organic carbon.
Finally, understanding the short- and long-term greenhouse effect of fire CO2 emissions, increased capacity to project future fire trends (especially mega-fires), with consideration of climate–fuel–human interactions, and improved fire weather and climate prediction skills (including exploring the SST-fire relations) remain central knowledge needs...
Wildfire smoke at sunset from a 2004 fire in New Mexico, shot by Wnc101496, Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Labels:
atmosphere,
emissions,
fires,
prediction,
science
Subscribe to:
Post Comments (Atom)
6 comments:
Wow! This blog looks exactly like my old one!
It's on a completely different topic but it has pretty much the same page layout and design. Superb choice of colors!
Here is my web page; binary options affiliates
For most up-to-date information you have to visit web and on world-wide-web I
found this web page as a finest web page for newest updates.
Feel free to visit my blog how to deposit funds on cedar finance
Excellent post. I was checking constantly this blog and
I am impressed! Very useful information specially the last part
:) I care for such information much. I was seeking this certain information for a long
time. Thank you and best of luck.
Take a look at my weblog :: cedar finance online investin
If you want to get a great deal from this piece of writing
then you have to apply these techniques to your won website.
Also visit my web site - http://cedarfinance.com/
Hmm is anyone else having problems with the pictures on this blog loading?
I'm trying to figure out if its a problem on my end or if it's the
blog. Any suggestions would be greatly appreciated.
My weblog - binary options system
Nice post. I was checking continuously this blog and I'm impressed! Very helpful info specifically the last part :) I care for such information much. I was seeking this particular info for a long time. Thank you and good luck.
Also visit my website: cedar fonance
Post a Comment