Saturday, January 19, 2013

Melt ponds cause the Artic sea ice to melt more rapidly

Alfred Wegener Institute: The Arctic sea ice has not only declined over the past decade but has also become distinctly thinner and younger. Researchers are now observing mainly thin, first-year ice floes which are extensively covered with melt ponds in the summer months where once metre-thick, multi-year ice used to float. Sea ice physicists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have now measured the light transmission through the Arctic sea ice for the first time on a large scale, enabling them to quantify consequences of this change. They come to the conclusion that in places where melt water collects on the ice, far more sunlight and therefore energy is able to penetrate the ice than is the case for white ice without ponds. The consequence is that the ice is absorbing more solar heat, is melting faster, and more light is available for the ecosystems in and below the ice. The researchers have now published these new findings in the scientific journal Geophysical Research Letters.

Melt ponds count among the favourite motifs for ice and landscape photographers in the Arctic. They are captured glistening in a seductive Caribbean sea blue or dark as a stormy sea on the ice floe. “Their colour depends entirely on how thick the remaining ice below the melt pond is and the extent to which the dark ocean beneath can be seen through this ice. Melt ponds on thicker ice tend to be turquoise and those on thin ice dark blue to black”, explains Dr. Marcel Nicolaus, sea ice physicist and melt pond expert at the Alfred Wegener Institute.

In recent years he and his team have observed a strikingly large number of melt ponds during summer expeditions to the central Arctic. Virtually half of the one-year ice was covered with melt ponds. Scientists attribute this observation to climate change. “The ice cover of the Arctic Ocean has been undergoing fundamental change for some years. Thick, multi-year ice is virtually nowhere to be found any more. Instead, more than 50 per cent of the ice cover now consists of thin one-year ice on which the melt water is particularly widespread. The decisive aspect here is the smoother surface of this young ice, permitting the melt water to spread over large areas and form a network of many individual melt ponds”, explains Marcel Nicolaus. By contrast, the older ice has a rougher surface which has been formed over the years by the constant motion of the floe and innumerable collisions. Far fewer and smaller ponds formed on this uneven surface which were, however, considerably deeper than the flat ponds on the younger ice.

...To find out the extent to which Arctic sea ice permits the penetration of the sun’s rays and how large the influence of the melt ponds is on this permeability, the AWI sea ice physicists equipped a remotely operated underwater vehicle (ROV “Alfred”) with radiation sensors and cameras. In the summer of 2011 during an Arctic expedition of the research ice breaker POLARSTERN, they sent this robot to several stations directly under the ice. During its underwater deployments, the device recorded how much solar energy penetrated the ice at a total of 6000 individual points all with different ice properties!...

Melt pond on Arctic sea ice, Photo: Stefan Hendricks, Alfred Wegener Institute

No comments: