Monday, December 24, 2012
How shrubs are reducing the positive contribution of peatlands to climate
The Swiss Federal Institute for Forest, Snow and Landscape Research (WSL): For the first time, a group of scientists from WSL and EPFL described why on the long run peatlands may not be able to continue fulfilling their role as the most effective carbon stocking ecosystems. They studied the mechanisms behind a phenomenon known as shrub encroachment of peatlands: Complex plant-microbe interactions are at the root of this worldwide vegetation change. The findings have been published online today in Nature Climate Change.
Peatlands (bogs, turf moors) are among the most important ecosystems worldwide for the storage of atmospheric carbon and thus for containing the climate warming process. In the last 30 to 50 years the peat (Sphagnum) mosses, whose decay produces the peat (turf), have come under pressure by vascular plants, mostly small shrubs. A new study by scientists from the Swiss Federal Institute for Forest, Snow and Landscape Research WSL and from the Ecole Polytechnique Fédérale de Lausanne describes for the first time what lies behind this change in vegetation and explains why vascular plants are at an advantage over peat (Sphagnum ) mosses in a warmer climate.
The research team closely monitored four peatland sites at altitudes ranging from 600 m to 1900 m over a period of three years. The selected altitudinal gradient reflects the expected changes in climate conditions for the year 2050 in northern Switzerland. They observed that the increase of shrub cover and soil temperature along the altitudinal gradient were responsible for a decrease of almost 50% of the production of new litter by peat mosses, the main contributors to peat accumulation.
The analysis showed that vascular plants can increase the availability of soil nitrogen (a primary nutrient for plant growth) by means of specific compounds contained in their leaves. They exploit the nutrient for their growth through the mediation of specific fungal symbiosis at root level (the mycorrhiza), a process that becomes more and more frequent when soil temperature increases. At the same time, with higher soil temperature vascular plants release a greater amount of organic matter into the soil through their roots (the so called “root exudates”) and this stimulates the decomposition activity of soil microbes....
A gully with peat moss, shot by Chris Eilbeck, Wikimedia Commons via Geograph UK, under the Creative Commons Attribution-Share Alike 2.0 Generic license
Peatlands (bogs, turf moors) are among the most important ecosystems worldwide for the storage of atmospheric carbon and thus for containing the climate warming process. In the last 30 to 50 years the peat (Sphagnum) mosses, whose decay produces the peat (turf), have come under pressure by vascular plants, mostly small shrubs. A new study by scientists from the Swiss Federal Institute for Forest, Snow and Landscape Research WSL and from the Ecole Polytechnique Fédérale de Lausanne describes for the first time what lies behind this change in vegetation and explains why vascular plants are at an advantage over peat (Sphagnum ) mosses in a warmer climate.
The research team closely monitored four peatland sites at altitudes ranging from 600 m to 1900 m over a period of three years. The selected altitudinal gradient reflects the expected changes in climate conditions for the year 2050 in northern Switzerland. They observed that the increase of shrub cover and soil temperature along the altitudinal gradient were responsible for a decrease of almost 50% of the production of new litter by peat mosses, the main contributors to peat accumulation.
The analysis showed that vascular plants can increase the availability of soil nitrogen (a primary nutrient for plant growth) by means of specific compounds contained in their leaves. They exploit the nutrient for their growth through the mediation of specific fungal symbiosis at root level (the mycorrhiza), a process that becomes more and more frequent when soil temperature increases. At the same time, with higher soil temperature vascular plants release a greater amount of organic matter into the soil through their roots (the so called “root exudates”) and this stimulates the decomposition activity of soil microbes....
A gully with peat moss, shot by Chris Eilbeck, Wikimedia Commons via Geograph UK, under the Creative Commons Attribution-Share Alike 2.0 Generic license
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment