Friday, November 9, 2012
Future warming likely to be on high side of climate projections, analysis finds
NCAR-UCAR Atmos News: Climate model projections showing a greater rise in global temperature are likely to prove more accurate than those showing a lesser rise, according to a new analysis by scientists at the National Center for Atmospheric Research (NCAR). The findings, published in this week’s issue of Science, could provide a breakthrough in the longstanding quest to narrow the range of global warming expected in coming decades and beyond.
NCAR scientists John Fasullo and Kevin Trenberth, who co-authored the study, reached their conclusions by analyzing how well sophisticated climate models reproduce observed relative humidity in the tropics and subtropics. The climate models that most accurately captured these complex moisture processes and associated clouds, which have a major influence on global climate, were also the ones that showed the greatest amounts of warming as society emits more greenhouse gas into the atmosphere.
“There is a striking relationship between how well climate models simulate relative humidity in key areas and how much warming they show in response to increasing carbon dioxide,” Fasullo says. “Given how fundamental these processes are to clouds and the overall global climate, our findings indicate that warming is likely to be on the high side of current projections.”
...The most common benchmark for comparing model projections is equilibrium climate sensitivity (ECS), or the amount of warming that eventually occurs in a model when carbon dioxide is doubled over preindustrial values. At current rates of global emission, that doubling will occur well before 2100.
For more than 30 years, ECS in the leading models has averaged around 5 degrees Fahrenheit (3 degrees Celsius). This provides the best estimate of global temperature increase expected by the late 21st century compared to late 19th century values, assuming that society continues to emit significant amounts of carbon dioxide. However, the ECS within individual models is as low as 3 degrees F and as high as 8 degrees F, leaving a wide range of uncertainty that has proven difficult to narrow over the past three decades....
Computer models that more accurately depict dry conditions in a key part of the subtropical atmosphere are also more likely to predict greater climate warming from increased greenhouse gases. In this graphic, each star indicates one of 16 leading global climate models. The left axis ("warming") corresponds to equilibrium climate sensitivity (ECS) in degrees C, which is the amount of warming produced by each model when carbon dioxide concentrations in the atmosphere are doubled over preindustrial values. The bottom axis shows May-to-August relative humidity for a portion of the upper atmosphere between about 20,000 to 30,000 feet in height and between about 10° and 25° latitude south in the southern subtropics. (©UCAR. Image by Carlye Calvin, based on Fasullo and Trenberth, Science, 2012.)
NCAR scientists John Fasullo and Kevin Trenberth, who co-authored the study, reached their conclusions by analyzing how well sophisticated climate models reproduce observed relative humidity in the tropics and subtropics. The climate models that most accurately captured these complex moisture processes and associated clouds, which have a major influence on global climate, were also the ones that showed the greatest amounts of warming as society emits more greenhouse gas into the atmosphere.
“There is a striking relationship between how well climate models simulate relative humidity in key areas and how much warming they show in response to increasing carbon dioxide,” Fasullo says. “Given how fundamental these processes are to clouds and the overall global climate, our findings indicate that warming is likely to be on the high side of current projections.”
...The most common benchmark for comparing model projections is equilibrium climate sensitivity (ECS), or the amount of warming that eventually occurs in a model when carbon dioxide is doubled over preindustrial values. At current rates of global emission, that doubling will occur well before 2100.
For more than 30 years, ECS in the leading models has averaged around 5 degrees Fahrenheit (3 degrees Celsius). This provides the best estimate of global temperature increase expected by the late 21st century compared to late 19th century values, assuming that society continues to emit significant amounts of carbon dioxide. However, the ECS within individual models is as low as 3 degrees F and as high as 8 degrees F, leaving a wide range of uncertainty that has proven difficult to narrow over the past three decades....
Computer models that more accurately depict dry conditions in a key part of the subtropical atmosphere are also more likely to predict greater climate warming from increased greenhouse gases. In this graphic, each star indicates one of 16 leading global climate models. The left axis ("warming") corresponds to equilibrium climate sensitivity (ECS) in degrees C, which is the amount of warming produced by each model when carbon dioxide concentrations in the atmosphere are doubled over preindustrial values. The bottom axis shows May-to-August relative humidity for a portion of the upper atmosphere between about 20,000 to 30,000 feet in height and between about 10° and 25° latitude south in the southern subtropics. (©UCAR. Image by Carlye Calvin, based on Fasullo and Trenberth, Science, 2012.)
Labels:
atmosphere,
modeling,
prediction,
science
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment