Friday, March 9, 2012
New insights into cloud formation
Science Daily: Clouds have a profound effect on the climate, but we know surprisingly little about how they form. Erika Sundén has studied how extremely small cloud particles can dispose of excess energy. This knowledge is necessary to understand processes in the atmosphere that affect global climate change.
The models that have been built to describe climate change contain a major source of uncertainty, namely the effects of clouds. The UN Intergovernmental Panel on Climate Change points out in its climate report for 2007 that new knowledge is needed in this field.
It is namely the case that clouds can act in two ways: they may be a mirror that reflects radiation from the sun back into space, and they may be a blanket that seals in the heat emitted by Earth. Mapping the formation and dispersion of clouds may, therefore, be a key step in climate research. "One important stage is understanding the fundamental properties of the particles involved," says Erika Sundén, doctoral student at the Department of Physics, University of Gothenburg.
..."I investigated water clusters that contained a small fraction of ammonia, and compared these with pure water clusters. I was able to show that the ammonia contributed to the stability of the clusters, and prevented them evaporating so rapidly. It may be that ammonia plays an important role in the early stages of cloud formation," she says.
It is not easy to measure the heat capacity of clusters, and an important part of her research has been to develop a method that can be used in future studies. Put simply, you could say that she has created water clusters in air, drawn them into a vacuum, and then examined them as they disintegrate. This method led her to an unexpected discovery.
"The temperature inside these clusters was around -100 °C, so one would expect that their heat capacity would correspond to that of ice. Despite this, the heat capacity of medium-sized clusters was greater, intermediate between that of ice and liquid water. The importance of this for how clouds form will be the subject of further research," she says...
A rolling thunderstorm in the Netherlands, shot by John Kerstholt., Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
The models that have been built to describe climate change contain a major source of uncertainty, namely the effects of clouds. The UN Intergovernmental Panel on Climate Change points out in its climate report for 2007 that new knowledge is needed in this field.
It is namely the case that clouds can act in two ways: they may be a mirror that reflects radiation from the sun back into space, and they may be a blanket that seals in the heat emitted by Earth. Mapping the formation and dispersion of clouds may, therefore, be a key step in climate research. "One important stage is understanding the fundamental properties of the particles involved," says Erika Sundén, doctoral student at the Department of Physics, University of Gothenburg.
..."I investigated water clusters that contained a small fraction of ammonia, and compared these with pure water clusters. I was able to show that the ammonia contributed to the stability of the clusters, and prevented them evaporating so rapidly. It may be that ammonia plays an important role in the early stages of cloud formation," she says.
It is not easy to measure the heat capacity of clusters, and an important part of her research has been to develop a method that can be used in future studies. Put simply, you could say that she has created water clusters in air, drawn them into a vacuum, and then examined them as they disintegrate. This method led her to an unexpected discovery.
"The temperature inside these clusters was around -100 °C, so one would expect that their heat capacity would correspond to that of ice. Despite this, the heat capacity of medium-sized clusters was greater, intermediate between that of ice and liquid water. The importance of this for how clouds form will be the subject of further research," she says...
A rolling thunderstorm in the Netherlands, shot by John Kerstholt., Wikimedia Commons, under the Creative Commons Attribution-Share Alike 3.0 Unported license
Labels:
atmosphere,
global,
modeling,
physics,
science
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment