Thursday, July 1, 2010

Nitrogen pollution alters global change scenarios from the ground up

PhysOrg via the Smithsonian: As atmospheric carbon dioxide levels rise, so does the pressure on the plant kingdom. The hope among policymakers, scientists and concerned citizens is that plants will absorb some of the extra CO2 and mitigate the impacts of climate change. For a few decades now, researchers have hypothesized about one major roadblock: nitrogen.

Plants build their tissue primarily with the CO2 they take up from the atmosphere. The more they get, the faster they tend to grow—a phenomenon known as the "CO2 fertilization effect." However, plants that photosynthesize greater amounts of CO2 will also need higher doses of other key building blocks, especially nitrogen. The general consensus has been that if plants get more nitrogen, there will be a larger CO2 fertilization effect. Not necessarily so, says a new paper published in the July 1 issue of Nature.

Adam Langley and Pat Megonigal, two ecologists at the Smithsonian Environmental Research Center, conducted a four-year study on plants growing in a brackish Chesapeake Bay marsh. In 2006 they began feeding sedge-dominated plots a diet rich in CO2 and nitrogen. Just as atmospheric CO2 levels are rising, so is nitrogen pollution in estuaries due farming, wastewater treatment and other activities. Because the sedge has previously shown a large CO2 fertilization effect, Langley and Megonigal expected that adding nitrogen could only enhance it.

The sedge, Schoenoplectus americanus, initially reacted as expected. However, after the first year something unanticipated happened. Two grass species that had been relatively rare in the plots, Spartina patens and Distichlis spicata, began to respond vigorously to the excess nitrogen. Eventually the grasses became much more abundant. Unlike sedges, grasses respond weakly to extra CO2 and do not grow faster. Thus, the nitrogen ultimately changed the composition of the ecosystem as well as its capacity to store carbon.

…"The study underscores the importance of considering the mix of species when you're trying to predict how terrestrial ecosystems will react to global climate change factors," said Langley. Rising CO2 levels will favor some plants and excess nitrogen will favor others. This lesson will be important to understand as scientists consider additional global change factors such as precipitation, temperature and, in tidal wetlands, sea-level rise. The plant species that gain a competitive edge under these evolving conditions will determine how ecosystems respond to global change….

A 1913 drawing of Spartina patens (Aiton) Muhl. saltmeadow cordgrass

No comments: