"Uncertainty and sensitivity have to go hand in hand. They're inextricable," said Gerard Roe, a UW associate professor of Earth and space sciences. "We're used to systems in which reducing the uncertainty in the physics means reducing the uncertainty in the response by about the same proportion. But that's not how climate change works."
Roe and Marcia Baker, a UW professor emeritus of Earth and space sciences and of atmospheric sciences, have devised and tested a theory they believe can help climate modelers and observers understand the range of probabilities from various factors, or feedbacks, involved in climate change. The theory is contained in a paper published in the Oct. 26 edition of Science.
In political polling, as the same questions are asked of more and more people the uncertainty, expressed as margin of error, declines substantially and the poll becomes a clearer snapshot of public opinion at that time. But it turns out that with climate, additional research does not substantially reduce the uncertainty.
The equation devised by Roe and Baker helps modelers understand built-in uncertainties so that the researchers can get meaningful results after running a climate model just a few times, rather than having to run it several thousand times and adjust various climate factors each time. "It's a yardstick against which one can test climate models," Roe said…
No comments:
Post a Comment