But Fan was worried about more than just the immediate effect of the floods. The Richland, Washington–based researcher—an expert on air pollution and climate at the Pacific Northwest National Laboratory in Richland, Washington—wondered how they had gotten so strong so fast. The Sichuan basin, surrounded by mountains that trap smoke billowing from its industrial centers, is “notorious” for its dirty air, she says. Did air pollution play a role? To find out, she and her team of Chinese, American, and Israeli researchers designed precision computer simulations to model what had happened.
Air pollution can affect precipitation in many ways. Sometimes, the aerosol particles in smoke can reduce or delay rain. Sometimes, they can make thunderstorms more intense. Their best understood interaction is in changing how water vapor condenses to form droplets in clouds. But Fan and her team have proposed a first: that pollution also changes some air circulation patterns that lead to rainclouds.
In the case of the Sichuan storms, they write in a paper published online before print in Geophysical Research Letters, soot in particular contributed to the catastrophic flooding. It prevented rainclouds from forming over the basin during the day, leading to more intense rainfall in the mountains that evening. “We were amazed at the scale of the effect the pollution had,” Fan says. “Effectively it redistributed the precipitation from the wide area of the basin into the mountains.”...
From the 2013 flooding in Sichuan, shot by 人神之间, Wikimedia Commons, under the Creative Commons CC0 1.0 Universal Public Domain Dedication
No comments:
Post a Comment