To accomplish that, Duke University researchers used software they developed to predict a constantly-evolving infectious bacterium's countermoves to one of these new drugs ahead of time, before the drug is even tested on patients.
In a study appearing in the journal Proceedings of the National Academy of Sciences, the team used their program to identify the genetic changes that will allow methicillin-resistant Staphylococcus aureus, or MRSA, to develop resistance to a class of new experimental drugs that show promise against the deadly bug.
When the researchers treated live bacteria with the new drug, two of the genetic changes actually arose, just as their algorithm predicted. "This gives us a window into the future to see what bacteria will do to evade drugs that we design before a drug is deployed," said co-author Bruce Donald, a professor of computer science and biochemistry at Duke.
Developing pre-emptive strategies while the drugs are still in the design phase will give scientists a head start on the next line of compounds that will be effective despite the germ's resistance mutations....
No comments:
Post a Comment