Thursday, February 20, 2014
Statistics research could build consensus around climate predictions
Science Daily: Vast amounts of data related to climate change are being compiled by research groups all over the world. Data from these many and varied sources results in different climate projections; hence, the need arises to combine information across data sets to arrive at a consensus regarding future climate estimates.
In a paper published last December in the SIAM Journal on Uncertainty Quantification, authors Matthew Heaton, Tamara Greasby, and Stephan Sain propose a statistical hierarchical Bayesian model that consolidates climate change information from observation-based data sets and climate models.
"The vast array of climate data -- from reconstructions of historic temperatures and modern observational temperature measurements to climate model projections of future climate -- seems to agree that global temperatures are changing," says author Matthew Heaton. "Where these data sources disagree, however, is by how much temperatures have changed and are expected to change in the future. Our research seeks to combine many different sources of climate data, in a statistically rigorous way, to determine a consensus on how much temperatures are changing."
Using a hierarchical model, the authors combine information from these various sources to obtain an ensemble estimate of current and future climate along with an associated measure of uncertainty. "Each climate data source provides us with an estimate of how much temperatures are changing. But, each data source also has a degree of uncertainty in its climate projection," says Heaton. "Statistical modeling is a tool to not only get a consensus estimate of temperature change but also an estimate of our uncertainty about this temperature change."
The approach proposed in the paper combines information from observation-based data, general circulation models (GCMs) and regional climate models (RCMs).
…By combining information from multiple observation-based data sets, GCMs and RCMs, the model obtains an estimate and measure of uncertainty for the average temperature, temporal trend, as well as the variability of seasonal average temperatures. The model was used to analyze average summer and winter temperatures for the Pacific Southwest, Prairie and North Atlantic regions (seen in the image above) -- regions that represent three distinct climates. The assumption would be that climate models would behave differently for each of these regions. Data from each region was considered individually so that the model could be fit to each region separately.
"Our understanding of how much temperatures are changing is reflected in all the data available to us," says Heaton. "For example, one data source might suggest that temperatures are increasing by 2 degrees Celsius while another source suggests temperatures are increasing by 4 degrees. So, do we believe a 2-degree increase or a 4-degree increase? The answer is probably 'neither' because combining data sources together suggests that increases would likely be somewhere between 2 and 4 degrees. The point is that that no single data source has all the answers. And, only by combining many different sources of climate data are we really able to quantify how much we think temperatures are changing."…
This map (presented here just as a generic illustration) shows the projected impact of climate change in the 2080s on agricultural productivity across the world. Impacts are measured as a percentage change in agricultural productivity compared to 2003 levels. It is based on work by Cline (2007) (referred to by the European Environment Agency (EEA)
In a paper published last December in the SIAM Journal on Uncertainty Quantification, authors Matthew Heaton, Tamara Greasby, and Stephan Sain propose a statistical hierarchical Bayesian model that consolidates climate change information from observation-based data sets and climate models.
"The vast array of climate data -- from reconstructions of historic temperatures and modern observational temperature measurements to climate model projections of future climate -- seems to agree that global temperatures are changing," says author Matthew Heaton. "Where these data sources disagree, however, is by how much temperatures have changed and are expected to change in the future. Our research seeks to combine many different sources of climate data, in a statistically rigorous way, to determine a consensus on how much temperatures are changing."
Using a hierarchical model, the authors combine information from these various sources to obtain an ensemble estimate of current and future climate along with an associated measure of uncertainty. "Each climate data source provides us with an estimate of how much temperatures are changing. But, each data source also has a degree of uncertainty in its climate projection," says Heaton. "Statistical modeling is a tool to not only get a consensus estimate of temperature change but also an estimate of our uncertainty about this temperature change."
The approach proposed in the paper combines information from observation-based data, general circulation models (GCMs) and regional climate models (RCMs).
…By combining information from multiple observation-based data sets, GCMs and RCMs, the model obtains an estimate and measure of uncertainty for the average temperature, temporal trend, as well as the variability of seasonal average temperatures. The model was used to analyze average summer and winter temperatures for the Pacific Southwest, Prairie and North Atlantic regions (seen in the image above) -- regions that represent three distinct climates. The assumption would be that climate models would behave differently for each of these regions. Data from each region was considered individually so that the model could be fit to each region separately.
"Our understanding of how much temperatures are changing is reflected in all the data available to us," says Heaton. "For example, one data source might suggest that temperatures are increasing by 2 degrees Celsius while another source suggests temperatures are increasing by 4 degrees. So, do we believe a 2-degree increase or a 4-degree increase? The answer is probably 'neither' because combining data sources together suggests that increases would likely be somewhere between 2 and 4 degrees. The point is that that no single data source has all the answers. And, only by combining many different sources of climate data are we really able to quantify how much we think temperatures are changing."…
This map (presented here just as a generic illustration) shows the projected impact of climate change in the 2080s on agricultural productivity across the world. Impacts are measured as a percentage change in agricultural productivity compared to 2003 levels. It is based on work by Cline (2007) (referred to by the European Environment Agency (EEA)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment