Wednesday, November 13, 2013
Scientists find precipitation, global warming link
Anne Stark at the Lawrence Livermore National Laboratory:... A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.
Emissions of heat-trapping and ozone-depleting gases affect the distribution of precipitation through two mechanisms. Increasing temperatures are expected to make wet regions wetter and dry regions drier (thermodynamic changes); and changes in atmospheric circulation patterns will push storm tracks and subtropical dry zones toward the poles.
"Both these changes are occurring simultaneously in global precipitation and this behavior cannot be explained by natural variability alone," said LLNL's lead author Kate Marvel. "External influences such as the increase in greenhouse gases are responsible for the changes."
The team compared climate model predications with the Global Precipitation Climatology Project's global observations, which span from 1979-2012, and found that natural variability (such as El Niños and La Niñas) does not account for the changes in global precipitation patterns. While natural fluctuations in climate can lead to either intensification or poleward shifts in precipitation, it is very rare for the two effects to occur together naturally.
"In combination, manmade increases in greenhouse gases and stratospheric ozone depletion are expected to lead to both an intensification and redistribution of global precipitation," said Céline Bonfils, the other LLNL author. "The fact that we see both of these effects simultaneously in the observations is strong evidence that humans are affecting global precipitation."
Marvel and Bonfils identified a fingerprint pattern that characterizes the simultaneous response of precipitation location and intensity to external forcing....
Rain clouds over Liverpool, shot by Stuart, Wikimedia Commons via Flickr, under the Creative Commons Attribution 2.0 Generic license
Emissions of heat-trapping and ozone-depleting gases affect the distribution of precipitation through two mechanisms. Increasing temperatures are expected to make wet regions wetter and dry regions drier (thermodynamic changes); and changes in atmospheric circulation patterns will push storm tracks and subtropical dry zones toward the poles.
"Both these changes are occurring simultaneously in global precipitation and this behavior cannot be explained by natural variability alone," said LLNL's lead author Kate Marvel. "External influences such as the increase in greenhouse gases are responsible for the changes."
The team compared climate model predications with the Global Precipitation Climatology Project's global observations, which span from 1979-2012, and found that natural variability (such as El Niños and La Niñas) does not account for the changes in global precipitation patterns. While natural fluctuations in climate can lead to either intensification or poleward shifts in precipitation, it is very rare for the two effects to occur together naturally.
"In combination, manmade increases in greenhouse gases and stratospheric ozone depletion are expected to lead to both an intensification and redistribution of global precipitation," said Céline Bonfils, the other LLNL author. "The fact that we see both of these effects simultaneously in the observations is strong evidence that humans are affecting global precipitation."
Marvel and Bonfils identified a fingerprint pattern that characterizes the simultaneous response of precipitation location and intensity to external forcing....
Rain clouds over Liverpool, shot by Stuart, Wikimedia Commons via Flickr, under the Creative Commons Attribution 2.0 Generic license
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment