Tuesday, May 28, 2013
Tracking the earth’s mantle -- and sea level rise
Rob Enslin in Syracuse University News: From Virginia to Florida, there is a prehistoric shoreline that, in some parts, rests more than 280 feet above modern sea level. The shoreline was carved by waves more than 3 million years ago—possible evidence of a once higher sea level, triggered by ice-sheet melting. But new findings by a team of researchers, including Robert Moucha, assistant professor of Earth Sciences in The College of Arts and Sciences, reveal that the shoreline has been uplifted by more than 210 feet, meaning less ice melted than expected.
Equally compelling is the fact that the shoreline is not flat, as it should be, but is distorted, reflecting the pushing motion of the Earth’s mantle. This is big news, says Moucha, for scientists who use the coastline to predict future sea-level rise. It’s also a cautionary tale for those who rely almost exclusively on cycles of glacial advance and retreat to study sea-level changes.
“Three million years ago, the average global temperature was two to three degrees Celsius higher, while the amount of carbon dioxide in the atmosphere was comparable to that of today,” says Moucha, who contributed to a paper on the subject in the May 15 issue of Science Express. “If we can estimate the height of the sea from 3 million years ago, we can then relate it to the amount of ice sheets that melted. This period also serves as a window into what we may expect in the future.”
Moucha and his colleagues—led by David Rowley, professor of geophysical sciences at the University of Chicago—have been using computer modeling to pinpoint exactly what melted during this interglacial period, some 3 million years ago. So far, evidenced is stacked in favor of Greenland, West Antarctica and the sprawling East Antarctica ice sheet, but the new shoreline uplift implies that East Antarctica may have melted some or not at all. “It’s less than previous estimates had implied,” says Rowley, the article’s lead author.
Moucha’s findings show that the jagged shoreline may have been caused by the interplay between the Earth’s surface and its mantle—a process known as dynamic topography. Advanced modeling suggests that the shoreline, referred to as the Orangeburg Scarp, may have shifted as much as 196 feet. Modeling also accounts for other effects, such as the buildup of offshore sediments and glacial retreats.
“Dynamic topography is a very important contributor to Earth’s surface evolution,” says Rowley. “With this work, we can demonstrate that even small-scale features, long considered outside the realm of mantle influence, are reflective of mantle contributions.”...
The East Coast shoreline, also known as the Orangeburg Scarp, as it may have appeared 3 million years ago. From the Syracuse University website
Equally compelling is the fact that the shoreline is not flat, as it should be, but is distorted, reflecting the pushing motion of the Earth’s mantle. This is big news, says Moucha, for scientists who use the coastline to predict future sea-level rise. It’s also a cautionary tale for those who rely almost exclusively on cycles of glacial advance and retreat to study sea-level changes.
“Three million years ago, the average global temperature was two to three degrees Celsius higher, while the amount of carbon dioxide in the atmosphere was comparable to that of today,” says Moucha, who contributed to a paper on the subject in the May 15 issue of Science Express. “If we can estimate the height of the sea from 3 million years ago, we can then relate it to the amount of ice sheets that melted. This period also serves as a window into what we may expect in the future.”
Moucha and his colleagues—led by David Rowley, professor of geophysical sciences at the University of Chicago—have been using computer modeling to pinpoint exactly what melted during this interglacial period, some 3 million years ago. So far, evidenced is stacked in favor of Greenland, West Antarctica and the sprawling East Antarctica ice sheet, but the new shoreline uplift implies that East Antarctica may have melted some or not at all. “It’s less than previous estimates had implied,” says Rowley, the article’s lead author.
Moucha’s findings show that the jagged shoreline may have been caused by the interplay between the Earth’s surface and its mantle—a process known as dynamic topography. Advanced modeling suggests that the shoreline, referred to as the Orangeburg Scarp, may have shifted as much as 196 feet. Modeling also accounts for other effects, such as the buildup of offshore sediments and glacial retreats.
“Dynamic topography is a very important contributor to Earth’s surface evolution,” says Rowley. “With this work, we can demonstrate that even small-scale features, long considered outside the realm of mantle influence, are reflective of mantle contributions.”...
The East Coast shoreline, also known as the Orangeburg Scarp, as it may have appeared 3 million years ago. From the Syracuse University website
Subscribe to:
Post Comments (Atom)
1 comment:
http://medassist.org/media/buypropecia/#10896 4rx propecia reviews - generic propecia forum
Post a Comment